404 research outputs found

    SURFACE INDUCED FINITE-SIZE EFFECTS FOR FIRST ORDER PHASE TRANSITIONS

    Full text link
    We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems like small magnetic clusters, we consider models with free boundary conditions. For a field driven transition with two coexisting phases at the infinite volume transition point h=hth=h_t, we prove that the low temperature finite volume magnetization m_{\free}(L,h) per site in a cubic volume of size LdL^d behaves like m_\free(L,h)=\frac{m_++m_-}2 + \frac{m_+-m_-}2 \tanh \bigl(\frac{m_+-m_-}2\,L^d\, (h-h_\chi(L))\bigr)+O(1/L), where hχ(L)h_\chi(L) is the position of the maximum of the (finite volume) susceptibility and m±m_\pm are the infinite volume magnetizations at h=ht+0h=h_t+0 and h=ht0h=h_t-0, respectively. We show that hχ(L)h_\chi(L) is shifted by an amount proportional to 1/L1/L with respect to the infinite volume transitions point hth_t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boun\- dary conditons, which for an asymmetric transition with two coexisting phases is proportional only to 1/L2d1/L^{2d}. One also consider the position hU(L)h_U(L) of the maximum of the so called Binder cummulant U_\free(L,h). While it is again shifted by an amount proportional to 1/L1/L with respect to the infinite volume transition point hth_t, its shift with respect to hχ(L)h_\chi(L) is of the much smaller order 1/L2d1/L^{2d}. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L2d1/L^{2d} term, the relative shift is the same as that for periodic boundary conditions.Comment: 65 pages, amstex, 1 PostScript figur

    General Theory of Lee-Yang Zeros in Models with First-Order Phase Transitions

    Full text link
    We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the qq-state Potts model for qq large enough.Comment: 4 pgs, 2 figs, to appear in Phys. Rev. Let

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing

    Get PDF
    We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence'' defined in terms of the densities of homomorphisms from the graphs of the sequence into small graphs; and convergence in a suitably defined metric. In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs, and for graphs with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemeredi partitions, sampling and testing of large graphs.Comment: 57 pages. See also http://research.microsoft.com/~borgs/. This version differs from an earlier version from May 2006 in the organization of the sections, but is otherwise almost identica

    Degree Distribution of Competition-Induced Preferential Attachment Graphs

    Full text link
    We introduce a family of one-dimensional geometric growth models, constructed iteratively by locally optimizing the tradeoffs between two competing metrics, and show that this family is equivalent to a family of preferential attachment random graph models with upper cutoffs. This is the first explanation of how preferential attachment can arise from a more basic underlying mechanism of local competition. We rigorously determine the degree distribution for the family of random graph models, showing that it obeys a power law up to a finite threshold and decays exponentially above this threshold. We also rigorously analyze a generalized version of our graph process, with two natural parameters, one corresponding to the cutoff and the other a ``fertility'' parameter. We prove that the general model has a power-law degree distribution up to a cutoff, and establish monotonicity of the power as a function of the two parameters. Limiting cases of the general model include the standard preferential attachment model without cutoff and the uniform attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics, Probability and Computing. Note, this is a long version, with complete proofs, of the paper "Competition-Induced Preferential Attachment" (cond-mat/0402268

    Approximating the partition function of the ferromagnetic Potts model

    Full text link
    We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q>2. Specifically we show that the partition function is hard for the complexity class #RHPi_1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the "random cluster" model, which is a probability distribution on graphs that is closely related to the q-state Potts model.Comment: Minor correction
    corecore